skip to main content


Search for: All records

Creators/Authors contains: "Xu, Xiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The large population movement during the Spring Festival travel in China can considerably accelerate the spread of epidemics, especially after the relaxation of strict control measures against COVID-19. This study aims to assess the impact of population migration in Spring Festival holiday on epidemic spread under different scenarios. Using inter-city population movement data, we construct the population flow network during the non-holiday time as well as the Spring Festival holiday. We build a large-scale metapopulation model to simulate the epidemic spread among 371 Chinese cities. We analyze the impact of Spring Festival travel on the peak timing and peak magnitude nationally and in each city. Assuming an R0 (basic reproduction number) of 15 and the initial conditions as the reported COVID-19 infections on 17 December 2022, model simulations indicate that the Spring Festival travel can substantially increase the national peak magnitude of infection. The infection peaks arrive at most cities 1–4 days earlier as compared to those of the non-holiday time. While peak infections in certain large cities, such as Beijing and Shanghai, are decreased due to the massive migration of people to smaller cities during the pre-Spring Festival period, peak infections increase significantly in small- or medium-sized cities. For a less transmissible disease (R0 = 5), infection peaks in large cities are delayed until after the Spring Festival. Small- or medium-sized cities may experience a larger infection due to the large-scale population migration from metropolitan areas. The increased disease burden may impose considerable strain on the healthcare systems in these resource-limited areas. For a less transmissible disease, particular attention needs to be paid to outbreaks in large cities when people resume work after holidays. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Clouded leopards (Neofelisspp.), a morphologically and ecologically distinct lineage of big cats, are severely threatened by habitat loss and fragmentation, targeted hunting, and other human activities. The long-held poor understanding of their genetics and evolution has undermined the effectiveness of conservation actions. Here, we report a comprehensive investigation of the whole genomes, population genetics, and adaptive evolution ofNeofelis. Our results indicate the genusNeofelisarose during the Pleistocene, coinciding with glacial-induced climate changes to the distributions of savannas and rainforests, and signatures of natural selection associated with genes functioning in tooth, pigmentation, and tail development, associated with clouded leopards’ unique adaptations. Our study highlights high-altitude adaptation as the main factor driving nontaxonomic population differentiation inNeofelis nebulosa. Population declines and inbreeding have led to reduced genetic diversity and the accumulation of deleterious variation that likely affect reproduction of clouded leopards, highlighting the urgent need for effective conservation efforts.

     
    more » « less
    Free, publicly-accessible full text available October 6, 2024
  3. We report an experimental realization of a modified counterfactual communication protocol that eliminates the dominant environmental trace left by photons passing through the transmission channel. Compared to Wheeler’s criterion for inferring past particle paths, as used in prior protocols, our trace criterion provides stronger support for the claim of the counterfactuality of the communication. We verify the lack of trace left by transmitted photons via tagging the propagation arms of an interferometric device by distinct frequency-shifts and finding that the collected photons have no frequency shift which corresponds to the transmission channel. As a proof of principle, we counterfactually transfer a quick response code image with sufficient fidelity to be scanned with a cell phone. 
    more » « less
    Free, publicly-accessible full text available September 12, 2024
  4. Abstract

    Genome‐wide association studies (GWAS) have led to rapid growth in detecting genetic variants associated with various phenotypes. Owing to a great number of publicly accessible GWAS summary statistics, and the difficulty in obtaining individual‐level genotype data, many existing gene‐based association tests have been adapted to require only GWAS summary statistics rather than individual‐level data. However, these association tests are restricted to unrelated individuals and thus do not apply to family samples directly. Moreover, due to its flexibility and effectiveness, the linear mixed model has been increasingly utilized in GWAS to handle correlated data, such as family samples. However, it remains unknown how to perform gene‐based association tests in family samples using the GWAS summary statistics estimated from the linear mixed model. In this study, we show that, when family size is negligible compared to the total sample size, the diagonal block structure of the kinship matrix makes it possible to approximate the correlation matrix of marginalZscores by linkage disequilibrium matrix. Based on this result, current methods utilizing summary statistics for unrelated individuals can be directly applied to family data without any modifications. Our simulation results demonstrate that this proposed strategy controls the type 1 error rate well in various situations. Finally, we exemplify the usefulness of the proposed approach with a dental caries GWAS data set.

     
    more » « less
  5. null (Ed.)